Filter Results By:

Products

Applications

Manufacturers

Showing results: 631 - 645 of 675 items found.

  • PXI-7841, Virtex-5 LX30 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module

    780337-01 - NI

    Virtex-5 LX30 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7841 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7841 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXI-7854, Virtex-5 LX110 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module

    780342-01 - NI

    Virtex-5 LX110 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7854 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7854 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PCIe-7852, Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device

    781103-01 - NI

    Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7852 features a user-programmable FPGA for high performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7852 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PXI-7842, Virtex-5 LX50 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module

    780338-01 - NI

    Virtex-5 LX50 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7842 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7842 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXI-7851, Virtex-5 LX30 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module

    780339-01 - NI

    Virtex-5 LX30 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7851 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7851 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PCIe-7851, Virtex-5 LX30 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device

    781102-01 - NI

    Virtex-5 LX30 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7851 features a user-programmable FPGA for high performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7851 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PXIe-5170, 4- or 8-Channel, 100 MHz Bandwidth, 14-Bit, Reconfigurable Oscilloscope

    783691-01 - NI

    PXIe, 100 MHz, 4- or 8-Channel, 14-Bit, Kintex-7 325T FPGA Reconfigurable PXI Oscilloscope—The PXIe‑5170 high-density PXI oscilloscope has eight simultaneously-sampled channels with flexible settings for coupling and voltage range. PXI oscilloscopes also feature a number of triggering modes, deep onboard memory, and an instrument driver that includes data streaming and analysis functions. This device is ideal for applications with many channels that require up to 250 MS/s or 100 MHz of analog bandwidth and advanced PXI synchronization. The PXIe‑5170 also features a programmable Kintex‑7 325T FPGA that can be used for custom acquisition, triggering, signal processing, and data streaming.

  • PXIe-5172, 100 MHz, 4- or 8-Channel, 14-Bit, Kintex-7 325T or 410T FPGA Reconfigurable PXI Oscilloscope

    PXIe-5172 / 784225-01 - NI

    PXIe, 100 MHz, 4- or 8-Channel, 14-Bit, Kintex-7 325T or 410T FPGA Reconfigurable PXI Oscilloscope—The PXIe 5172 high-density PXI oscilloscope has eight simultaneously-sampled channels with flexible settings for coupling and voltage range. PXI oscilloscopes also feature a number of triggering modes, deep onboard memory, and an instrument driver that includes data streaming and analysis functions. This device is ideal for applications with many channels that require up to 250 MS/s or 100 MHz of analog bandwidth and advanced PXI synchronization. The PXIe 5172 also features a programmable Kintex-7 325T or 410T FPGA that can be used for custom acquisition, triggering, signal processing, and data streaming.

  • PCIe-7856, Kintex-7 160T FPGA, 1 MS/s, Multifunction Reconfigurable I/O Device

    786455-01 - NI

    PCIe, Kintex-7 160T FPGA, 1 MS/s, Multifunction Reconfigurable I/O Device - The PCIe‑7856 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7856 features a dedicated analog-to-digital converter per channel for independent timing and triggering. This device offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXIe-5172, 250 MS/s, 14-bit Reconfigurable Oscilloscope

    784226-01 - NI

    PXIe, 100 MHz, 4- or 8-Channel, 14-Bit, Kintex-7 325T or 410T FPGA Reconfigurable PXI Oscilloscope—The PXIe 5172 high-density PXI oscilloscope has eight simultaneously-sampled channels with flexible settings for coupling and voltage range. PXI oscilloscopes also feature a number of triggering modes, deep onboard memory, and an instrument driver that includes data streaming and analysis functions. This device is ideal for applications with many channels that require up to 250 MS/s or 100 MHz of analog bandwidth and advanced PXI synchronization. The PXIe 5172 also features a programmable Kintex-7 325T or 410T FPGA that can be used for custom acquisition, triggering, signal processing, and data streaming.

  • Spectrum Analysis For E5081A Up To 44 GHz

    S960907B - Keysight Technologies

    The Keysight S960907B spectrum analyzer (SA) software application adds high-performance microwave spectrum analysis capabilities to the Keysight ENA-X up to 44 GHz. With fast stepped-FFT sweeps resulting from optimized data processing, the SA application provides quick spurious searches over broad frequency ranges. Conduct simultaneous spectrum measurements using test and reference receivers. For efficient measurements of spurious signals emanating from mixers and frequency converters, combine the multi-channel SA with the internal swept-signal generators. The SA application employs source-power and receiver-response calibration as well as fixture de-embedding, providing in-fixture and on-wafer spectrum measurements with the highest level of accuracy.

  • PCIe-7858, Kintex-7 325T FPGA, 1 MS/s, DRAM Multifunction Reconfigurable I/O Device

    786457-01 - NI

    PCIe, Kintex-7 325T FPGA, 1 MS/s, DRAM Multifunction Reconfigurable I/O Device - The PCIe‑7858 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7858 features a dedicated analog-to-digital converter per channel for independent timing and triggering. This device offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PCIe-7857, Kintex-7 160T FPGA, 1 MS/s, DRAM Multifunction Reconfigurable I/O Device

    786458-01 - NI

    PCIe, Kintex-7 160T FPGA, 1 MS/s, DRAM Multifunction Reconfigurable I/O Device - The PCIe‑7857 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7857 features a dedicated analog-to-digital converter per channel for independent timing and triggering. This device offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • 6000 Series Digital I/O Modules

    Pacific Instruments, Inc.

    Series 6000 digital I/O modules record signals from frequency counters, flow meters, encoders, discrete transducers, IRIG time, etc. which are often part of the test environment. These digital signals are time aligned and recorded alongside the system’s analog measurements. High density digital inputs provide an opportunity to easily include facility controls like switches, valve positions, relays, lights, etc. along with the test data. Series 6000 digital I/O modules also provide outputs generated by user command or automatically by Sequence, Alarms or DSP. User generated outputs are accomplished in software while sequencers can be programmed prior to a test and initiated by program or hardware control. Alarm conditions preprogrammed on the analog side can automatically generate digital outputs which are typically connected to facility control systems or PLCs. A DSP adds powerful real-time processing and is appropriate for PID control loops, derived parameter calculations and a variety of other real-time operations.

  • Lock-in Amplifier

    HF2LI - Zurich Instruments AG

    The Zurich Instruments HF2LI (high-frequency, 2 inputs) is a digital lock-in amplifier covering the frequency range between DC and 50 MHz. It features 2 physical input channels so that it can replace 2 devices in many measurement setups. The 128-bit digital signal processing delivers superior precision thus boosting both the noise performance and the dynamic reserve. With these unprecedented capabilities, the HF2LI brings lock-in amplification to a new level and enables new applications in a frequency range that was previously tied to analog instrumentation. The computer is connected by a high-speed USB interface, which allows data acquisition at high rates. The HF2LI is delivered with a fully featured graphical user interface and a choice of programming interfaces that greatly add to the usability of the instrument.

Get Help